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The mammalian immune system continually faces death in the form of its own dead and dying cells that arise
during normal tissue turnover, infections, cellular damage, and cancer. Complex decisions must then be
made that will permit a protective response to pathogens, while at the same time destroying tumors but
not attacking vital systems of the host that could lead to autoimmunity. By using an investigative technique
termed the fiveWs (who, what, when, where, and why), we will examine how the immune system responds to
antigens generated via cell death. This analysis will give us a better understanding of the molecular differ-
ences fundamental to tolerogenic or immunogenic cell death, the cells that sense and react to the dead cells,
and the consequences of these fundamental elements on the maintenance or abrogation of tolerance.
Introduction
A variety of pathways are used by multicellular organisms to

orchestrate cell death during development and morphogenesis

to control cell numbers and eliminate damaged cells (Penaloza

et al., 2006). It is estimated that up to 106 cells die in the human

body every second, most as a result of normal tissue turnover

(Green et al., 2009). There is also cell death in response to

infection that may represent a primitive defense mechanism

to prevent pathogen replication by removing the infected or

damaged cells. Moreover, the same cell death pathways are

needed to control the number of effector cells generated during

an immune response and then eliminate the majority of them

once the pathogen is cleared (Parish et al., 2009; Pellegrini

et al., 2003; Barreiro et al., 2004). Thus, one of the major chal-

lenges for the immune system is to react to foreign pathogens

within the context of this constant antigenic ‘‘noise’’ derived

from the dead and dying cells, yet not respond to the self-

antigens that can be presented to the immune system in far

greater (and uncontrollable) amounts. Simultaneously, it is

advantageous to retain the ability to direct immune responses

toward the ‘‘self’’ antigens expressed by tumor cells. Thus, the

immune system is faced with the important task of being respon-

sive to pathogens (foreign invaders) while destroying tumors

(derived from self) and not attacking vital systems of the host

(self-antigens).

Understanding how these complex immunological decisions

are made has been intensely investigated over the past 20 years,

although it has been difficult, at times, to get the complete

picture. One reason for this is that each study focused on only

a few criteria that may not apply in every situation. For example,

the general mechanism by which a cell died was proposed to

influence the type of immune response. This concept arose

from some of the original descriptions of apoptosis as being

a ‘‘silent death’’ and tolerogenic, whereas necrosiswas a ‘‘violent

death’’ that released a number of immunostimulatory molecules

(Green et al., 2009; Thompson, 1995). In some instances this has

proven true as demonstrated by studies comparing the tolero-

genic and immunogenic properties of apoptotic and necrotic
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cells (Griffith et al., 1996, 2007; Shi et al., 2003). It is now recog-

nized, however, that apoptotic cells can be highly immunogenic,

eliciting protective immune responses (Kepp et al., 2009; Ullrich

et al., 2008; Zitvogel et al., 2004). In an effort to explain this

disparity, some studies have characterized the molecular

composition of dying cells, suggesting that factors released at

the time of cell death could determine the resultant immune

response. For example, the release of cytokines or damage-

associated molecular patterns (DAMPs) from a dying cell can

influence immunity (Bianchi, 2007; Chen et al., 2001; Gao

et al., 1998; Millar et al., 2003). Although these studies are

compelling, the release of factors from dying cells does not

always dictate the type of immune response, because DAMPs

can be modified by the cell death pathway to promote either

tolerance or immunity (Kazama et al., 2008). Another approach

has considered the activation of phagocytic cells as the deciding

factor in the generation of tolerance or immunity to the antigens

associated with the eaten dead cells. These data suggest that

dead cells (apoptotic or necrotic) can inhibit or increase antigen

presentation by the antigen-presenting cell (APC) (Albert et al.,

2001; Dhodapkar et al., 2001; Sauter et al., 2000). However, it

is important to keep in mind that the maturation state of the

phagocyte does not always dictate its ability to induce tolerance

or immunity (Ferguson et al., 2002; Kazama et al., 2008). To

reconcile some of these disparities, the influence of pathogen-

associated molecular patterns (PAMPs) derived from infectious

agents has also been considered, because bacterial products

or viral nucleic acids perceived by phagocytic cells in the pres-

ence of dead cells can dictate the resultant immune response

through activation of APC (Medzhitov and Janeway, 2002;

Torchinsky et al., 2009). This hypothesis, too, has been ques-

tioned by observations where the death of transformed cells

(Obeid et al., 2007) and in some cases nontransformed cells

(Rock and Kono, 2008; Shi et al., 2003) elicited immune

responses in the absence of infection. In addition, debris from

nontransformed cells in some settings can stimulate general

or organ-specific autoimmune responses (Gaipl et al., 2007).

Thus, a simple explanation based on any of these criteria cannot
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apply to all aspects of tolerogenic and immunogenic cell death.

As important as it is to consider the factors listed above, it is

equally important to consider those criteria that are not typically

discussed in this context—including variations in the type of

dead cell (e.g., lymphocyte, fibroblast, epithelial cell), cell status

(transformed, nontransformed, activated, naive), immune re-

sponse examined (humoral or cellular), organ or organ system

explored (e.g., gut, eye, skin), availability of T cell help, and

even the desired result (e.g., graft acceptance, antitumor immu-

nity, autoimmunity, immune deviation). With the addition of these

many considerations (and caveats), it becomes even more diffi-

cult to apply general principles to every situation. We certainly

cannot consider all of these variables in this review, but we think

it is important to keep them in mind as we discuss the effects of

cell death on the immune response. Consequently, for our

discussion we have applied (and slightly modified) the old jour-

nalism maxim called the ‘‘five Ws.’’ This is a classical concept

in news style, research, and police investigations such that for

a report to be considered complete it must answer a checklist

of questions—who, what, when, where, why, and how. Thus,

the nature of the immune response that develops in the face of

dead cells depends on who dies, what it releases, when it dies,

where it dies, and why it dies. The answers to these questions

lead us to an understanding of how immunity is regulated. With

these interrogative questions we can perhaps get a better under-

standing of themolecular differences fundamental to tolerogenic

or immunogenic cell death, the cells that sense and react to

the dead cells, and the consequences of these fundamental

elements on the maintenance or abrogation of tolerance. Varia-

tions in these factors can have consequences that range from

effective antipathogen or antitumor immune responses to auto-

immune pathology.

Who Dies: Characteristics of the Dying Cell
Just as different types of living cells are highly specialized to

perform unique functions, the type of cell dying can dramatically

influence the resultant immune response. For example, bortezo-

mib-induced apoptotic myeloma cells expose the chaperone

HSP90 on their surface, facilitating their recognition by dendritic

cells (DCs) and the subsequent induction of immunity (Spisek

et al., 2007). Similarly, in response to some chemotherapeutics

(such as anthracyclins), but not others (such as mitomycin C or

etoposide), tumor cells expose complexes formed by the chap-

erone calreticulin and disulphide isomerase eRp57 on their cell

surface. This occurs at a proapoptotic stage and facilitates the

uptake of dying cells by DCs (Obeid et al., 2007; Panaretakis

et al., 2008). Exposure of these complexes strongly correlates

with immunogenicity, and anthracyclin-treated dying tumor cells

that expose calreticulin can be used as a cancer vaccine.

Because this cell death is caspase dependent and apoptotic,

this is an example where apoptotic death can prime for immu-

nity. In contrast, Ronchetti et al. (1999a, 1999b) found that

although apoptotic tumor cells could prime, they were much

less efficient than nonreplicating live cells. The immunogenicity

of the apoptotic cells was proportional to the number of cells

injected and correlated with the serum concentration of inter-

leukin-10 (IL-10) and interleukin-1 beta (IL-1b). Another study

found that DCs (but not macrophages [Mf]) pulsed with

apoptotic tumor cells were efficient at cross-priming (immunity)
(Miyake et al., 2007), highlighting the importance of the cell

phagocytizing the dead cells (see ‘‘Where’’ below). Interestingly,

g-irradiated tumor cells can also be tolerogenic based on their

ability to suppress cytotoxic T lymphocyte (CTL) responses

and antitumor immunity via the induction of CD8+ T cell anergy

and CD4+ regulatory T (Treg) cell responses (Xie et al., 2009).

Thus, apoptotic tumor cells can prime or tolerize depending on

other factors (see ‘‘What’’ below) or the experimental system

(or tumor type) employed. In contrast, a recent study suggests

that in some situations live tumor cells may represent amore effi-

cient method of priming the immune system compared to dead

cells (Matheoud et al., 2010). These authors found that DCs inter-

nalized cytosolic and membrane material into vesicles from

metabolically labeled live cells, leading to enhanced cross-

priming (immunity).

It has been suggested that the death of tissue cells during

normal cell turnover followed by their uptake by resident DCs

is involved in themaintenance of peripheral tolerance (Luckashe-

nak et al., 2008). Several studies have addressed this issue with

systems where model antigens were overexpressed in defined

cells from birth such that they were considered ‘‘self-antigens’’

by the immune system. In these instances, potent tolerance

could be induced to these experimental self-antigens (Adler

et al., 1998; Kurts et al., 1998). Similarly, experiments with non-

transformed cells such as pancreatic islets demonstrate that

apoptotic death canmake these cells efficient tolerogens. Young

nonobese diabetic (NOD) mice injected with a single low dose of

streptozotocin exhibited impaired T cell responses and mice

were protected from spontaneous diabetes. b-cell apoptosis

was necessary for this tolerance, because streptozotocin did

not protect rat insulin promoter-cytokine response modifier A

(RIP-CrmA) transgenic NODmice (Hugues et al., 2002). Similarly,

DCs fed apoptotic islet cells induced potent tolerance and

prevented the development of diabetes in the recipients when

injected (Marin-Gallen et al., 2010). The death of T cells during

activation-induced cell death (AICD) can also induce potent

tolerance, not just by deleting the reactive cells but also by

generating active regulatory cells (Herndon et al., 2005; Gurung

et al., 2010). In this situation, tolerance was directed only to

T cells of the same specificity, perhaps to control potential auto-

immunity during the contraction phase of an immune response

where large numbers of antigen-reactive T cells were deleted.

In a similar manner, treatment of normal mice with intact anti-

body to CD3 (which induces tolerance) increases systemic

TGF-b produced by Mf and immature DC phagocytes exposed

to apoptotic T cells leading to immune suppression (Perruche

et al., 2008). In contrast, in vitro anti-CD3-activated normal

T cells induced to undergo apoptosis are immunogenic, not tol-

erogenic—an effect mediated by CD154 expression on the acti-

vated T cell (Gurung et al., 2009). Similarly, activated g-irradiated

peripheral blood mononuclear cells (PBMC) will mature human

DCs, leading to the production of proinflammatory cytokines

(Johansson et al., 2007). The question then becomes why do

apoptotic T cells in some cases induce tolerance but in others

promote immunity? The answer may lie with the timing of the

T cell death (see ‘‘When’’ below). Perhaps when small numbers

of dying cells arise during normal turnover they are ignored by

the immune system. Regardless, different types of dying cells

can induce dramatically different immune responses, making it
Immunity 35, October 28, 2011 ª2011 Elsevier Inc. 457
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difficult to predict the outcome and leading us to consider what

are the dying cells releasing as the next important factor.

What It Releases: Tolerogenic and Immunogenic
Factors Produced by Dying Cells
Several mechanisms have been proposed to explain the intrinsic

tolerogenic and immunogenic potential of dead cells, including

the elaboration of cytokines, DAMPs, and other cellular proteins.

Apoptotic lymphocytes produce the immunosuppressive cyto-

kines IL-10 (Gao et al., 1998) and TGF-b (Chen et al., 2001) as

they die. In contrast, DAMPs, such as HMGB1 (Kazama et al.,

2008; Scaffidi et al., 2002), heat shock proteins (e.g., HSP70)

(Millar et al., 2003), uric acid (Shi et al., 2003), mammalian

DNA, RNA, IFN-a (Matzinger, 2002), and CD154 (Gurung et al.,

2009), released by dead cells are immunogenic. Recognition of

DAMPs (e.g., HMGB1) by pattern recognition receptors (PRR)

such as the receptor for advance glycation end products

(RAGE) or toll-like receptors (TLRs) is thought to mature DCs

and stimulate immunity (Bianchi, 2007). In addition, necrotic cells

can activate the inflammasome (immunity), as shown by the

cleavage of caspase 1 and release of mature IL-1b and IL-18

(Lamkanfi and Dixit, 2010; Li et al., 2009). Thus, the different

mechanisms of death along with the production and/or release

of various pro- and anti-inflammatory molecules as a result of

the death process all contribute to whether immunological toler-

ance or immunity is initiated against the antigens associated with

the dead cells.

Interestingly, the release of ‘‘factors’’ is not always predictive

because the cell death process itself can alter the immuno-

genicity of themolecules released. All apoptotic cells can release

DAMPs (Choi et al., 2004; Kazama et al., 2008), but the process

of apoptosis can modify these immunostimulatory molecules to

promote tolerance instead of immunity (Kazama et al., 2008). For

example, intravenously injected necrotic cells promote antigen-

specific immune responses through a mechanism that involves

the release of HMGB1; in the absence of active HMGB1, these

cells induce tolerance. Similarly, apoptotic cells can be immuno-

genic rather than tolerogenic if caspase activation is blocked or

caspase-3 and -7 are absent. This seems to contradict the

requirement for caspase activation in immunogenic cell death

by anthracyclin-treated tumor cells (Zitvogel et al., 2004) (dis-

cussed above), but perhaps factors such as the location of the

dying cells have an effect (see ‘‘Where’’ below). This caspase

requirement was explained by examining the consequences of

caspase activation to the cell. During apoptosis, a loss in mito-

chondrial membrane potential allows for the release of cyto-

chrome c, which further facilitates caspase activation. The active

effector caspases then cleave a component of complex I in the

electron transport chain (NADH dehydrogenase [ubiquinone]

Fe-S protein 1, 75 kDa [NDUFS1]) in the permeabilized mito-

chondria. The resulting inhibition of complex I function induces

the production of reactive oxygen species (ROS) (Ricci et al.,

2004), which oxidizes a key cysteine residue in HMGB1 and

neutralizes its ability to stimulate immunity. Mutation of the

caspase cleavage site in NDUFS1 does not block apoptosis,

but apoptotic cells that express this mutant protein promote

immunity rather than tolerance. Thus, one important factor in

determining whether tolerance or immunity will ensue is whether

HMGB1 (and perhaps other DAMPs) is (are) modified in the dying
458 Immunity 35, October 28, 2011 ª2011 Elsevier Inc.
cells (Kazama et al., 2008). One prediction would be that during

immunogenic cell death (e.g., after some types of chemotherapy

[Apetoh et al., 2007]), ROS is not produced and DAMPs remain

unmodified; however, this hypothesis remains to be tested. It

is not currently known how HMGB1 modification influences its

ability to bind receptors or other molecules. HMGB1 has been

shown to bind to several cytokines (IL-1b, TNF-a, and IFN-g)

as well as free nucleic acids and the PRR mentioned above

(RAGE, TLR) (Ferguson et al., 2011). It is possible that redox

modification of HMGB1 influences its ability to bind one of these

molecules. However, these data highlight the importance of cas-

pase activation in determining tolerogenicity or immunogenicity.

In support of this it was suggested that caspase-enhanced

presentation could be important for the pathogenesis of human

immunodeficiency virus-1 (HIV-1) because a high frequency of

effector CD8+ T cells that recognize caspase-cleaved epitopes

are in the peripheral blood of HIV-1-infected individuals, and

the frequency of these effector CD8+ T cells correlates with the

frequency of apoptotic CD4+ T cells (Rawson et al., 2007).

Thus, simply considering the factors released from dying cells

is also an inadequate way to predict their tolerogenic or immuno-

genic potential, leading us to consider when a cell dies.

When It Dies: Influence of the Timing of Cell Death
on Tolerance and Immunity
As mentioned earlier, the activation state of the cell when it dies

(especially T cells) can dramatically influence its immunogenicity

or tolerogenicity. Anti-CD3-activated T cells express CD154,

which can change a normally tolerogenic naive apoptotic T cell

into a potent immune stimulator (Gurung et al., 2009). In these

studies, CD154 expression induced DC production of IL-12

and resulted in immunity. This observation contrasts with the tol-

erogenic nature of T cells that undergo AICD (Gurung et al., 2010;

Herndon et al., 2005). Perhaps early during immune activation

the balance between the CD154+ and the CD154– T cells

dictates the fate of the response. For instance, during an acute

infection, the high numbers of CD154-expressing T cells may

help maintain a high threshold of inflammation and immune

responses required to clear the pathogen. However, during

AICD, which occurs toward the conclusion of an immune

response, the T cells may no longer express CD154 and toler-

ance ensues. This permits removal of reactive cells and suppres-

sion of potential anti-self immune responses. Figure 1 is a repre-

sentation of the differential effects of naive versus activated

apoptotic T cells on the immune response. It should be noted

that this tolerance is relatively short lived (�60 days) and the

system can then respond to future antigen challenge (Gurung

et al., 2010). It remains to be determined whether immunological

memory occurs in this situation.

Another consideration is the stage of cell death when the

corpses encounter the immune system. Rapid removal of early

apoptotic cells prevents immune stimulation, and failure to

remove dead cells can lead to autoimmunity (Asano et al.,

2004; Hanayama et al., 2004; Ip and Lau, 2004). Apoptotic cells

need to be promptly recognized and cleared to avoid potential

leakage of inflammatory cytoplasmic contents. When dying cells

encounter DCs very early in the cell death process (<2 hr after

induction of apoptosis), they are immunogenic, as are dead cells

that have progressed to late stage apoptosis (>12 hr; a.k.a.



Figure 1. Proposed Mechanism of Tolerance or Immunity Induced by Naive or Activated Apoptotic T Cells
Left: Induction of tolerance by naive apoptotic T cells. Naive apoptotic T cells are taken up by DCs, which remain in an immature state. The antigens derived from
these apoptotic T cells are cross-presented on MHC class I to CD8+ T cells in the absence of costimulatory molecules and CD4+ T cell help. These ‘‘helpless’’
CD8+ T cells upregulate TRAIL expression and then go on to suppress subsequent immune responses mediated by CD4+ T cells. Right: Induction of immunity by
activated apoptotic T cells. CD154-expressing, activated apoptotic T cells activate DCs to upregulate costimulatory molecules (CD80, CD86) and produce
proinflammatory cytokines such as IL-12. Antigens derived from the activated apoptotic T cells are cross-presented on MHC class I and directly presented on
MHCclass II onmatured DCs, resulting in the priming of both CD8+ andCD4+ T cells. Consequently, the proinflammatory cytokines andCD4+ T cell help the CD8+

T cells to fully differentiate into effector CTL instead of a helpless, TRAIL-expressing, CD8+ Treg cells.
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secondary necrosis) because they can leak HMGB1 (Scaffidi

et al., 2002). For optimum tolerogenicity, DCs must encounter

apoptotic corpses approximately 4–8 hr after the induction of

death; presumably this is due to the need for caspase activation,

expression of ‘‘find me and eat me’’ signals, and DAMP modifi-

cation by ROS.

Where It Dies: Influence of the Anatomical Location
of Death on Immunity and Tolerance
Although who, what, and when are important considerations in

our discussion, where the corpses are removed from the body

can directly determine the APC and/or phagocytic cell involved

in stimulating the immune system. Apoptotic cells are typically

phagocytized by Mf and DCs, and apoptotic cells elaborate

a variety of ‘‘find me and eat me’’ signals that direct phagocyte

attraction and engulfment (Green et al., 2009). Phosphatidylser-

ine (PS) present on apoptotic cells play important roles in their

efficient clearance, and a number of cellular receptors expressed

by phagocytes, such as CD36, T cell immunoglobulin domain,

mucin-like domain (Tim)-1, and Tim-4, facilitate the uptake of

apoptotic cells (Miyanishi et al., 2007; Miyasaka et al., 2004;

Peng et al., 2007). Other receptors, including the integrins avb3

and avb5, Class B scavenger receptors, ATP-binding cassette

transporter (ABC1), CD14, receptor tyrosine kinases c-MER,

TYRO, and Axl, CD91 (receptor for heat shock protein gp96),

and signal regulatory protein (SIRP)-a, have also been shown

to play various roles in the recognition and clearance of

apoptotic cells (Peng et al., 2007). A complete discussion of

these molecules is found in an accompanying review (Ravichan-

dran, 2011, this issue) and these issues will not be discussed

further. However, it is clear that the exposure of these molecules

is the result of the cell death process (e.g., caspase activation)

and is critical for apoptotic cell clearance, and that failure to re-

move apoptotic bodies typically leads to inflammation and/or
autoimmunity. Indeed, autoimmunity results when Mf uptake

of apoptotic cells is compromised by interfering with specific

‘‘dead cell’’ receptors (e.g., Tim4 or milk fat globule-EGF factor

8 [MFG-E8]). Interestingly, only autoantibodies were induced in

these cases of autoimmunity and anti-self T cell responses

were not detected (Hanayama et al., 2004; Miyanishi et al.,

2007; Miyasaka et al., 2004). This unexpected outcome may

be related to evidence showing that Mf are incapable of

cross-priming despite their profound phagocytic capabilities

(Albert et al., 1998). Thus, it would appear that the consequences

of dead cell phagocytosis on Mf or DCs may be quite different

immunologically.

DCs that engulf apoptotic cells can cross-present self-anti-

gens to T cells and induce tolerance (a.k.a. ‘‘cross-tolerance’’),

such that cross-tolerance has become a central concept in self

tolerance (Albert, 2004). Evidence suggests that several DC

subsets exist that perform different functions depending on their

lineage or regional localization (i.e., where they reside). For

example, splenic CD8a+ DCs promote tolerance whereas

CD8a� DCs promote immunity (den Haan et al., 2000). Yet,

CD8a+ DCs are also potent inducers of antiviral immunity (Allan

et al., 2003), and antiviral T cell responses to herpes simplex

virus-1 (HSV-1) infection are more robust when antigens derived

from the infected apoptotic cells are cross-presented on major

histocompatibility complex (MHC) class I rather than when those

antigens are presented by direct infection of the DC (Bosnjak

et al., 2005). Such observations suggest that the location of

the uptake of dying cells, rather than the type of DC, may better

dictate the immunological outcome. For example, CD8a+ DCs in

the skin could promote immunity (cross-priming) because these

cells typically migrate to the regional lymph nodeswhereas these

same DCs that reside in the spleen stimulate tolerance (cross-

tolerance). Interestingly, the spleen is not the only location that

appears to be involved in tolerance induction by dying cells.
Immunity 35, October 28, 2011 ª2011 Elsevier Inc. 459
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Lymphoid cells that die in vivo tend to accumulate in the liver

(Huang et al., 1994), and this organ has also been implicated

as a site for tolerance induction (Crispe et al., 2006).

Although many studies investigating the uptake of apoptotic

cells and their influence on immune function have focused on

Mf (Miyake et al., 2007), DCs can phagocytize apoptotic cells

(Albert et al., 2001) and apoptotic cells can certainly suppress

DC production of proinflammatory cytokines such as IL-12

(Kim et al., 2004). That is why it is essential to consider the region

of the body where the dead cells are engulfed because Mf and

DCs are preferentially concentrated in different anatomical loca-

tions. For example, the absence of splenic marginal zone Mf

delays the clearance of apoptotic cells and promotes immunity

via DC antigen presentation (Miyake et al., 2007), perhaps by

overwhelming immunostimulatory DCs with cellular debris. It is

also well established that antigen-coupled cells injected intrave-

nously induce a state of immune tolerance (Battisto et al., 1980;

Conlon et al., 1980) through a process that involves apoptosis of

the injected cells (Ferguson et al., 2002). However, subcuta-

neous injection of the same cells induces immunity (Greene

and Benacerraf, 1980), and most studies of immunogenic

apoptosis involve injection by this route. Subcutaneous injection

of cells leads to their engulfment by skin-derived DCs that ulti-

mately traffic to LN to induce an immune response. This may

mimic the effect of tumors that are implanted into subcutaneous

sites and undergo apoptosis after chemotherapy (Apetoh et al.,

2007; Chaput et al., 2007).

Although the main player for tolerance or immunity is the DC,

there are no studies (to our knowledge) describing how the

‘‘find me and eat me’’ signals promote DC uptake of dead cells

and then participate in the induction of tolerance or immunity.

In fact, although phagocytosis of dead cells by DCs has been

studied, the requirement for DC phagocytosis via one of the

known PS receptors for tolerance is also largely unexplored.

Deletion of the MFG-E8 receptor in mice results in autoantibody

production but also leads to enhanced CD8+ CTL cross-priming

(i.e., immunity) (PengandElkon, 2011). Thispuzzlingobservation,

aswell as the role of ‘‘findme and eatme’’ signals for tolerance or

immunity mediated through DCs, requires further investigation.

It is also noteworthy that there appears to be a difference in

antigen processing intrinsic to DC subsets that is associated

with increased expression of proteins involved in MHC process-

ing (Dudziak et al., 2007). CD8a+ DCs tend to process antigens

for presentation via MHC class I molecules, whereas CD8a�

DCs preferentially present antigens via MHC class II. This

suggests that for tolerance, CD4+ T cell immunity may be dimin-

ished whereas CD8+ T cell immunity is promoted, resulting in

‘‘helpless’’ CTL induction (see below). In one study, CD8a+

DCs preferentially phagocytized apoptotic cells, again suggest-

ing a tolerogenic role for this DC subpopulation (Iyoda et al.,

2002). However, there are other data showing that CD8a+ DCs

are no better at phagocytizing apoptotic cells than are CD8a�

DCs (Schnorrer et al., 2006), suggesting that phagocytosis

cannot be the sole criterion for tolerance or immunity.

There are also a number of other consequences for the DC

after an encounter with apoptotic cells that can have implications

for the type of immune response induced. It is generally

accepted that DC maturation through interaction with PAMPs

or DAMPs, asmeasured by increasedMHC class II and costimu-
460 Immunity 35, October 28, 2011 ª2011 Elsevier Inc.
latory molecule (e.g., CD80, CD86) expression, is critical for the

induction of immunity. Several reports have documented that

apoptotic cells can prevent DCmaturation, keeping them imma-

ture and in a tolerance-inducing state (Albert et al., 2001; Sauter

et al., 2000). This is a compelling idea, but it should be noted that

this is not always the case because mature DCs can also induce

tolerance subsequent to engulfment of apoptotic cells (Ferguson

et al., 2002; Kazama et al., 2008). Thus, simple maturation

cannot be the determining factor and thismay be related to other

factors discussed here such as DC localization (where) and the

properties of apoptotic cells (what).

Why It Dies: Influence of Infection and Tissue Damage
Why cells die can have a strong influence on the subsequent

immune response, especially if the cells are dying as the result

of an infection. Phagocytosis of apoptotic cells in the presence

of TLR ligands (PAMPs) derived from infectious agents can

convert the tolerogenic signals from the apoptotic cells to immu-

nogenic ones by increasing the activation status of phagocytic

cells and changing the inflammatory cytokines they elaborate.

For example, infected apoptotic cells are a critical component

of the innate immune signals instructing Th17 cell differentiation

(Torchinsky et al., 2009), suggesting that pathogens particularly

adept at triggering apoptosis might preferentially induce T cell-

mediated immunity. Similarly, apoptotic vesicles frommycobac-

terial-infected Mf stimulate CD8+ T cell immunity in vivo. In this

system, the apoptotic vesicles displayed potent adjuvant activity

by stimulating protection against M. tuberculosis infection via

TLR (Winau et al., 2006). Likewise, Histoplasma-specific CD8+

T cell immunity could also be induced by DCs that present exo-

genous Histoplasma antigens, either through direct ingestion of

the yeast cells or through uptake of apoptotic Mf-associated

fungal antigens (Lin et al., 2005).

Inflammation and cell death also occur during tissue damage

under sterile conditions, leading to the release of cytoplasmic

contents (i.e., DAMPs) and the activation of immunity. The best

examples of this are the recent studies examining uric acid (Shi

et al., 2003) and ATP release fromdying cells. Uric acid is the final

product of purinemetabolism and its causative role in gout is well

established, because this painful inflammatory condition is the

result of uric acid crystals precipitating in joints and capillaries

(Rock and Kono, 2008). The association between uric acid with

other forms of inflammation and immune regulation was not

apparent until it was found to serve as an adjuvant in CTL

responses against particulate antigens (Shi et al., 2003). Thus,

uric acid released from damaged cells, without an associated

pathogen, can alert the body to danger and stimulate inflamma-

tion. Similarly, the release of nucleotides (including ATP andUTP)

from damaged neurons in mice attracts microglial cells (Mf-like

phagocytes in the brain) to sites of tissue damage (Hanley

et al., 2004; Koizumi et al., 2007). In addition, ATP released

from dying cells is now recognized as an important ‘‘find me’’

signal for phagocytic cells (Elliott et al., 2009). ATPalso stimulates

the inflammasome and in association with TLR ligand stimulation

can result in the release of IL-1b, IL-18, and HMGB1 (Lamkanfi

and Dixit, 2010). Attraction of phagocytic cells and inflamma-

some activation result in the induction of immunity.

It should be noted that the presence of PAMPs (as well

DAMPs) is not always predictive of robust immunity.
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Inflammatory cells responding to a viral infection in the eye

undergo apoptosis (Griffith et al., 1995), but even in the presence

of viral antigens, nucleic acids, and ample DCs for presentation

(McMenamin, 1999; Steptoe et al., 2000), these dead cells

induce systemic immune tolerance to the viral antigens (Griffith

et al., 1996). In this case, apoptosis and tolerance function to

protect the delicate structures of the eye from the damaging

effects of inflammation, thereby preserving vision. Similar tolero-

genic effects of apoptotic cells were observed in an experimental

model of polymicrobial sepsis where sepsis-induced lympho-

cyte apoptosis decreased the survival of the infected host. In

this model, preventing apoptosis via caspase inhibitors or trans-

genic Bcl-2 expression significantly improved survival (Hotch-

kiss et al., 1999a, 1999b, 2000). Further studies revealed that

the presence of infection-induced apoptotic cells also induced

potent immune tolerance for a subsequent T cell response

(Unsinger et al., 2010). Thus, it would seem that the immunosti-

mulatory potential of the PAMPs elicited by the infection can be

overcome by the presence of large numbers of apoptotic cells.

This could be considered a detrimental effect of apoptotic cell-

induced tolerance because immunosuppressed septic patients

are prone to secondary nosocomial infections (Hotchkiss et al.,

1999b).

How Is Immunity Regulated: A Synthesis of the Five Ws
The immune system has devised multiple means by which

immunological tolerance is maintained. Thymic selection re-

moves the vast majority of developing thymocytes that express

a TCR with high specificity for self-peptide:MHC complexes,

but some self-reactive T cells still make it through the selection

process (Sprent and Kishimoto, 2002). The elimination of periph-

eral cells capable of responding to self-antigens or antigens

associatedwith apoptotic cells is onemeans bywhich peripheral

tolerance can be established, with FasL-dependent AICD and

Bim-mediated death being key pathways of establishing and/

or maintaining peripheral tolerance (Green et al., 2003; Hildeman

et al., 2002; Pellegrini et al., 2003). The timely elimination of

lymphocytes—especially those immune cells that can respond

to self-antigen—is one way to prevent their accumulation and

persistence. Autoimmune lymphoproliferative syndrome (ALPS)

exemplifies how disruption of the Fas signaling pathway leads

to the massive accumulation of autoreactive lymphocytes that

would normally be eliminated via deletion and the development

of a variety of autoimmune pathologies (Straus et al., 1999).

Onewould expect, though, that tolerance resulting from lympho-

cyte deletion would be transient because the deleted cells

should eventually be replenished. Indeed, deletional tolerance

wanes over time, as seen in models of soluble peptide antigen-

induced peripheral T cell deletion, but the process of T cell

expansion and contraction after the injection of soluble peptide

antigen also generates Treg cells that can maintain tolerance

for an extended period—even after a second infusion of antigen-

specific effector T cells (Gurung et al., 2010; Herndon et al.,

2005).

Work by Gershon and Kondo (1970, 1971) pioneered the idea

that immune tolerance was actively mediated by regulatory

or suppressive populations of T cells that could also transfer

tolerance to a naive individual (termed ‘‘infectious immunologic

tolerance’’). Interestingly, the immune cells responsible for trans-
ferring immunologic tolerance in these studies were CD8+ T cells

(Cantor et al., 1976; Gershon et al., 1972); however, the inability

to successfully isolate and identify these CD8+ Treg cells led to

skepticism about their true existence despite the consistent

reproducible observation of the suppressive activity of these

cells. The description of CD4+CD25+Foxp3+ Treg cells in the

1990s revived the idea that T cells are potent regulators of immu-

nity (Takahashi et al., 1998). There have been numerous reports

describing the basic characteristics of CD4+CD25+Foxp3+ Treg

cells, and immune regulation by Treg cells has been implicated in

numerous experimental model systems, including transplanta-

tion and autoimmunity (reviewed in Rudensky, 2011; Sakaguchi

et al., 2006). Apoptotic cell infusion or the in vivo depletion of

T cells via CD3-specific mAb results in the expansion of

CD4+CD25+Foxp3+ Treg cells associated with the production

of TGF-b from Mf and DCs that phagocytize the apoptotic cells

(Kleinclauss et al., 2006; Perruche et al., 2008). The increase

in CD4+CD25+Foxp3+ Treg cells in this system is also related

to the selective depletion of CD4+Foxp3� conventional T cells

(Penaranda et al., 2011). In contrast, the recognition of apoptotic

cells in the context of inflammation can direct helper T cell differ-

entiation in a very different direction that supports productive

(and sometimes pathogenic) immunity. Specifically, phago-

cytosis of bacterially infected apoptotic cells (i.e., TLR ligand-

expressing apoptotic cells) drives IL-6, IL-23, and TGF-b produc-

tion by DCs leading to the induction of Th17 cells. Blocking

apoptosis prevents the development of a Th17 cell-mediated

immune response needed to clear the infection (Torchinsky

et al., 2009). This finding is very important when one considers

that self-reactive Th17 cells are prominent players in a number

of autoimmune diseases (Hu et al., 2011; Jäger and Kuchroo,

2010), making it tempting to speculate that the autoimmunity

was triggered by substantial apoptotic death during a time of

infection or inflammation. This contrasts the tolerogenic effects

of ‘‘substantial’’ apoptosis during sepsis (Hotchkiss et al.,

1999b; Unsinger et al., 2010), indicating that further study of

these mechanisms is required.

DCs can cross-present antigens associated with apoptotic

cells by MHC class I molecules to CD8+ T cells (cross-priming)

(Albert et al., 1998). Perhaps paradoxically, the induction of toler-

ance by apoptotic cells also depends on MHC class I and can

involve the deletion of CD8+ T cells as well as immune suppres-

sion by CD8+ Treg cells (cross-tolerance) (Ferguson et al., 2002;

Heath and Carbone, 2001; Steinman et al., 2003). Reconciling

cross-priming and cross-tolerance provides insights into one

mechanism of immunity or tolerance induction by dying cells.

After antigen recognition by CD8+ T cells and their development

into CTL, the long-term fate of these cells is determined by addi-

tional signals provided by DCs, which must be ‘‘licensed’’ by

a previous CD40-CD154-mediated interaction with activated

CD4+ T cells (Schoenberger et al., 1998). Without this additional

signal, the activated helpless CTL function as primary effector

T cells but with a short lifespan (Sun and Bevan, 2003) or they

die as a result of AICD after subsequent exposure to antigen

(Janssen et al., 2005, 2006). AICD in this instance is mediated

by TNF-related apoptosis-inducing ligand (TRAIL), which trig-

gers apoptosis in the helpless CTL and other activated T cells.

The relationship between these observations and the induction

of tolerance (cross-tolerance) by apoptotic cells became clear
Immunity 35, October 28, 2011 ª2011 Elsevier Inc. 461
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in a recent series of experiments. Specifically, DCs that had

engulfed necrotic cells could present antigen to both CD4+ and

CD8+ T cells, but those that engulfed apoptotic cells presented

antigen only to CD8+ T cells (Griffith et al., 2007). Consequently,

the CD8+ T cells produced TRAIL after re-exposure to antigen,

which inhibited the induction of a cell-mediated immune

response mediated by CD4+ T cells—a phenomenon we have

noted in other experimental models of tolerance (Griffith et al.,

2011; Gurung et al., 2010). Thus, exposure of the immune system

to apoptotic cells can shift the development of classical ‘‘helped’’

CTL-mediated immune responses to those dominated by tolero-

genic, helpless CTL that produce TRAIL after re-exposure to

antigen (see Figure 1). Although one effect of apoptotic cells

on DC function is to prevent activation of CD4+ T cell help for

CTL, in some cases DCs that have engulfed apoptotic cells can

drive CD4+ T cell differentiation toward the Th2 cell type via the

production of IL-10 (Gao et al., 1998). We do not know whether

such Th2 cells can license DCs to promote CD8+ T cell immunity,

but if not, suchpolarizationmay further promote thegeneration of

helpless CD8+ T cells to suppress immune responses.

Can This Information Be Exploited for Therapeutic
Purposes?
One of the most important considerations subsequent to our

discussion of the five Ws is how can we take what we have

learned to date and apply it therapeutically. In some cases, it

will be critical to break the tolerance induced by the apoptotic

cells to restore immunity. One recent example that fits this

concept used the mouse model of sepsis induced by cecal liga-

tion and puncture, which leads to the induction of tolerance, but

also included a secondary heterologous bacterial infection

subsequent to sepsis initiation. Septic mice had a reduced ability

to control the secondary infection, which was paralleled by sup-

pressed T cell responses, versus sham-treated control mice.

Administration of a blocking TRAIL mAb to the septic WT mice

restored the ability to control the secondary infection and

generate Ag-specific CD8+ T cell responses like those seen in

sham-treated mice (Gurung et al., 2011). A second example is

the use of apoptotic tumor cells in cancer vaccines, which is

becoming more accepted as a viable immunotherapy option in

some cancer patients. The GVAX platform of cancer immuno-

therapy utilizes a vaccine consisting of irradiated whole tumor

cells that have been modified to secrete granulocyte macro-

phage-colony stimulating factor (GM-CSF), which helps recruit

and mature the APC that phagocytize the injected apoptotic

tumor cells (Hege et al., 2006).

It may also be desirable to use apoptotic cells to deliberately

establish tolerance. Organ transplantation has long appreciated

the powerful tolerogenic potential of apoptotic cells (Kleinclauss

et al., 2003, 2006; Li et al., 2006; Morelli and Larregina, 2010),

and it is clear that the alterations in APC function and the gener-

ation of regulatory cells occurs in transplant recipients given an

infusion of apoptotic cells therapeutically. The use of apoptotic

cells to prevent autoimmunity has also been reported. Specifi-

cally, intravenous injection of myelin oligodendroglial glycopro-

tein (MOG)-expressing apoptotic cells reduced MOG-specific

T cell responses and prevented the development of experi-

mental autoimmune encephalomyelitis (EAE) (Miyake et al.,

2007). Similar results were found in another model of experimen-
462 Immunity 35, October 28, 2011 ª2011 Elsevier Inc.
tally induced disease (Smith and Miller, 2006). The therapeutic

use of apoptotic cells in this fashion is very exciting, but it is

important to remember that the apoptotic cells were given

prophylactically (prior to the induction of EAE), and it remains

to be seen whether the same therapeutic benefit would be

seen in settings where autoimmunity was already established.

Extracorporeal photopheresis has been used clinically for

almost 20 years as an approved therapy for the treatment of

cutaneous T cell lymphoma (Dupont and Craciun, 2009). For

this treatment, peripheral blood is treated ex vivo with a photo-

activatable compound (8-methoxypsoralen) and UVA light and

immediately returned to the patient. A similar strategy is being

tested for the treatment of graft-versus-host disease (Hannani

et al., 2010). Although mechanisms are not completely clear,

tolerance is thought to be the result of apoptosis in the treated

leukocytes followed by uptake by the patient’s phagocytes

leading to modulation of the immune response and decreased

severity of the disease.

Another area of potential therapeutic intervention is related

to the recent findings with HMGB1 in which the redox status

of the protein determines its immunogenicity. When HMGB1 is

released from apoptotic cells, it is oxidized and tolerance to

antigen associated with the apoptotic cells develops. In con-

trast, when HMGB1 was reduced by treatment of the apoptotic

cells with antioxidants or when a form of HMGB1 was used

that could not be oxidized (changing HMGB1 Cys106 to Ser),

it promoted immunity to the same antigen (see above discussion

and Kazama et al., 2008). BecauseHMGB1 is thought tomediate

inflammation in a number of pathogenic processes including

septic shock (Bianchi, 2007), perhaps this is related to its redox

status. The oxidative conditions generated during sepsis (Roth

et al., 2004) may oxidize HMGB1 such that in the presence of

apoptotic cells, tolerance ensues. Thus, treatment of immuno-

suppressed individuals with a nonoxidizable form of HMGB1

might be a method to overcome the immunosuppression in-

duced by apoptotic cells promoting beneficial adaptive immune

responses.

Concluding Thoughts
It is safe to say that in all aspects of life, organisms must deal

with death. Although there is no immunological consequence

associated with death at the end of life, from birth our immune

systems must deal with continuous exposure to dying and

dead cells. Therefore, understanding how the mammalian

immune system deals with the myriad of antigens associated

with dying and dead cells can have important implications for

the study of cancer biology, infectious diseases, tissue injury,

and autoimmunity. At this point we have to ask ourselves

why the effects of cell death on the immune system are

so complex. When the complexity of the vertebrate immune

system was increased to deal with pathogens, it also increased

the chances of eliciting autoimmune reactions (Green et al.,

2009). Failing (or delaying) to remove dying cells can be highly

inflammatory and activate autoimmunity, but the mechanisms

of dead cell removal are highly conserved in animals with

no adaptive immune system. Because pathogens evolved in

parallel to avoid detection, the immune system once again

adapted to deal with these invaders by incorporating the more

primitive pathogen-sensing mechanisms into the adaptive
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immune response (Medzhitov and Janeway, 2002). However,

dead cells cannot always be immunogenic because this might

lead to autoimmunity, and they certainly cannot always be tol-

erogenic because thismight prevent adaptive responses against

the invaders. Thus, the immune system is constantly evaluating

cell death based on many of the criteria discussed here to stay

ahead of infectious agents, promoting survival of the organism.

To better understand the issues involved in determining the

immunogenic or tolerogenic nature of dead cells, we have

applied the investigative technique called the five Ws. With this

formula we have tried to get the ‘‘full story’’ to help us predict

the outcome of the encounter between dead cells and the

immune system. The principle underlying the maxim is that

each question should elicit a factual answer, and importantly

none of these questions can be answered with a simple ‘‘yes’’

or ‘‘no.’’ The result of an encounter between dead cells and the

immune system depends on factors related to who dies, what

it releases, when it dies, where it dies, and why it dies to collec-

tively determine how immunity is regulated. Figure 2 is our inter-

pretation of a fiveWs flower petal diagram commonly used in this

analysis. We hope this diagram can make some sense out of the

complexities involved by determining the contribution of each

petal (the five Ws) and applying the result to the immune
Immunity 35,
response (how). Because of space limita-

tions, we have limited our discussion

to the effects of cell death on T cell

responses; however, we hope that these

ideas can be applied to understating the

nature of B cell response and factors

that induce B cell tolerance. Although

we probably don’t have enough informa-

tion to be precise in every case, we can

keep these in mind as we continue to

study this important area of immunology.

We are reminded of Mark Twain’s

comment on naming constellations in

Following the Equator: A Journey Around

the World (1897): ‘‘Constellations have

always been troublesome things to
name. If you give one of them a fanciful name, it will always refuse

to live up to it; it will always persist in not resembling the thing it

has been named for.’’ Hopefully with more study, we can be

more precise in determining the constellation of immunological

responses in the presence of cell death.
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Bourdoncle, P., Renia, L., Prevost-Blondel, A., Lucas, B., et al. (2010).
Cross-presentation by dendritic cells from live cells induces protective
immune responses in vivo. Blood 115, 4412–4420.

Matzinger, P. (2002). The danger model: a renewed sense of self. Science 296,
301–305.

McMenamin, P.G. (1999). Dendritic cells andmacrophages in the uveal tract of
the normal mouse eye. Br. J. Ophthalmol. 83, 598–604.

Medzhitov, R., and Janeway, C.A., Jr. (2002). Decoding the patterns of self and
nonself by the innate immune system. Science 296, 298–300.

Millar, D.G., Garza, K.M., Odermatt, B., Elford, A.R., Ono, N., Li, Z., and
Ohashi, P.S. (2003). Hsp70 promotes antigen-presenting cell function and
converts T-cell tolerance to autoimmunity in vivo. Nat. Med. 9, 1469–1476.

Miyake, Y., Asano, K., Kaise, H., Uemura, M., Nakayama, M., and Tanaka, M.
(2007). Critical role of macrophages in the marginal zone in the suppression of
immune responses to apoptotic cell-associated antigens. J. Clin. Invest. 117,
2268–2278.

Miyanishi, M., Tada, K., Koike, M., Uchiyama, Y., Kitamura, T., and Nagata, S.
(2007). Identification of Tim4 as a phosphatidylserine receptor. Nature 450,
435–439.

Miyasaka, K., Hanayama, R., Tanaka, M., and Nagata, S. (2004). Expression of
milk fat globule epidermal growth factor 8 in immature dendritic cells for
engulfment of apoptotic cells. Eur. J. Immunol. 34, 1414–1422.

Morelli, A.E., and Larregina, A.T. (2010). Apoptotic cell-based therapies
against transplant rejection: role of recipient’s dendritic cells. Apoptosis 15,
1083–1097.

Obeid, M., Tesniere, A., Ghiringhelli, F., Fimia, G.M., Apetoh, L., Perfettini, J.L.,
Castedo, M., Mignot, G., Panaretakis, T., Casares, N., et al. (2007). Calreticulin
exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13,
54–61.
Immunity 35, October 28, 2011 ª2011 Elsevier Inc. 465



Immunity

Review
Panaretakis, T., Joza, N., Modjtahedi, N., Tesniere, A., Vitale, I., Durchschlag,
M., Fimia, G.M., Kepp, O., Piacentini, M., Froehlich, K.U., et al. (2008). The
co-translocation of ERp57 and calreticulin determines the immunogenicity of
cell death. Cell Death Differ. 15, 1499–1509.

Parish, I.A., Rao, S., Smyth, G.K., Juelich, T., Denyer, G.S., Davey, G.M.,
Strasser, A., and Heath, W.R. (2009). The molecular signature of CD8+
T cells undergoing deletional tolerance. Blood 113, 4575–4585.

Pellegrini, M., Belz, G., Bouillet, P., and Strasser, A. (2003). Shutdown of an
acute T cell immune response to viral infection ismediated by the proapoptotic
Bcl-2 homology 3-only protein Bim. Proc. Natl. Acad. Sci. USA 100, 14175–
14180.

Penaloza, C., Lin, L., Lockshin, R.A., and Zakeri, Z. (2006). Cell death in devel-
opment: shaping the embryo. Histochem. Cell Biol. 126, 149–158.

Penaranda, C., Tang, Q., and Bluestone, J.A. (2011). Anti-CD3 therapy
promotes tolerance by selectively depleting pathogenic cells while preserving
regulatory T cells. J. Immunol. 187, 2015–2022.

Peng, Y., and Elkon, K.B. (2011). Autoimmunity in MFG-E8-deficient mice is
associated with altered trafficking and enhanced cross-presentation of
apoptotic cell antigens. J. Clin. Invest. 121, 2221–2241.

Peng, Y., Martin, D.A., Kenkel, J., Zhang, K., Ogden, C.A., and Elkon, K.B.
(2007). Innate and adaptive immune response to apoptotic cells. J.
Autoimmun. 29, 303–309.

Perruche, S., Zhang, P., Liu, Y., Saas, P., Bluestone, J.A., and Chen,W. (2008).
CD3-specific antibody-induced immune tolerance involves transforming
growth factor-beta from phagocytes digesting apoptotic T cells. Nat. Med.
14, 528–535.

Rawson, P.M., Molette, C., Videtta, M., Altieri, L., Franceschini, D., Donato, T.,
Finocchi, L., Propato, A., Paroli, M.,Meloni, F., et al. (2007). Cross-presentation
of caspase-cleaved apoptotic self antigens in HIV infection. Nat. Med. 13,
1431–1439.

Ravichandran, K.S. (2011). Beginnings of a good apoptotic meal: The find-me
and eat-me signaling pathways. Immunity 35, this issue, 445–455.
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